AI家用助手:李飞飞团队研发家用AI系统 可实时监测独居老人新冠症状

人工智能
2020
04/08
12:28
分享
评论

在新冠肺炎大流行期间,照顾老年人变得更加困难。人工智能是否在这个领域发挥作用?最近,在斯坦福大学以人为本人工智能学院(HAI)的一场名为“COVID-AI”的直播大会上,斯坦福大学计算机学教授李飞飞向外界介绍了人工智能家用系统,它可以跟踪居民的健康状况,包括新冠肺炎的症状,同时还能确保隐私。

这套AI系统的目的在于帮助老年人(大部分是独居老人)与家庭或医疗护理人员保持联系。保护老年人的最佳方法是减少与人接触,尤其是还未显示出症状的新冠肺炎感染者。据李飞飞团队介绍,这套家用系统的优势在于,它可以让看护人远程监视老年人现有疾病和基本健康状况,减少接触的危险。

李飞飞和她的团队在直播演讲中介绍,这套系统在新冠肺炎暴发前,由临床医生和计算机科学家组成的跨学科研究小组就已经在开发了。“过去几年来,我们一直在研究一套AI系统,它可以帮助老年人独立生活,还可以管理他们的慢性病。最近我们意识到,这套技术对新冠肺炎大流行下的老年人也有帮助。”李飞飞在演讲中称。

据李飞飞介绍,整个家用AI系统包括安装在家中的摄像头和智能传感器。在演讲中,李飞飞提到了四种传感器,包括相机、深度传感器、热传感器和可穿戴传感器。整个团队的研究主要集中在前三个。由于隐私在这套系统中非常重要,因此针对相机的研究更具挑战。“相机能透露出个人活动的详细信息,但它与大多数人的隐私需求不符。”李飞飞说。

整个系统如何运作,以及如何确保隐私?李飞飞在演讲中进行了逐一介绍。当传感器获得数据时,系统会将其发送到安全的中央服务器进行处理。不过,在这一过程中,李飞飞也承认目前阶段还存在安全风险,例如会受到网络攻击的威胁。但她强调,研究人员会在整个过程中都遵循隐私和安全准则。团队给边缘设备配备了加密磁盘,用删除涉及用户隐私的数据,做人脸模糊处理,经过加密后,再传输到云中。

一旦数据到达服务器,一组临床医生和AI专家就会对其进行分析和注释,以开发机器学习模型。训练后的这套模型可以识别临床相关的一些行为,包括呼吸、睡眠、饮食和其他行为。李飞飞表示,团队目前正在开发涉及日常生活活动的模型,模型可以计算出用户的健康状况是否恶化。但这套模型并不是对用户所有的日常活动进行深入和广泛的分析,需要找到隐私和公共安全之间的平衡点。

训练后的模型可以部署到边缘设备中,并在本地运行。这样一来,研究团队就搭建了一个闭环系统,数据安全也可以得到保证。但这个闭环系统无法对模型进行进一步的更新和提升。为了解决这点,李飞飞提到,团队正在设想使用联合学习和无监督学习的方式,即无需人工注释,就对每个边缘设备上的模型进行更新,以使用新环境,并提高鲁棒性。通过联合学习,团队可以将安全攻击限制在设备上,以减少针对云的隐私和安全威胁。

最后,系统还需要一种能将智能传感器检测结果传递给医护人员或家庭成员的方法。李飞飞称,目前团队还未找到具体的解决方案,但正在考虑使用移动应用程序或者Web界面。

“这些传感器并不是要做出诊断决策或取代临床医生,而是可以持续出现,随时关注我们在家中的老年人,并及时向临床医生和家人发出警报。”在快要结束演讲时,李飞飞说:“当然,在这项研究的每一步以及这项技术的部署中,我们都必须对道德,隐私和安全方面进行全面的考虑。”

当前新冠肺炎大流行带来的挑战不仅包括确保老年人的安全和健康,还包括更广泛且迫切跟踪疾病和应该被隔离的人群。当被问到这套系统是否也可以解决这个问题时,李飞飞表示,团队不愿意涉足这个领域。“我们的目标是提出尖端的计算机视觉和机器学习技术,以帮助解决医疗保健中一些最重要和最具挑战性问题,同时提出道德、隐私和AI医疗保健研究的安全指南。”李飞飞说。

目前,这个项目仍处于研究阶段。整个团队还需要完成数据集的构建和模型工作,团队也未透露仍需多少时间才能完成。但是,团队已经与美国致力于优质高级护理公司安乐(On Lok)合作,在旧金山的一家辅助生活设施中完成了一项试点研究,并将进入下一阶段的研究。

家用AI系统的隐私安全问题

该系统将由安装在家中的摄像头和智能传感器组成。报告概述了四种传感器 -- 摄像头、深度传感器、热传感器和可穿戴传感器(例如 FitBit)。李飞飞说他们的研究目前只集中在前三个方面。她承认,隐私保护在这样的系统中至关重要,因此摄像头的设置带来了较大的挑战。“摄像机传感器会记录大量个人活动的详细信息,因此最可能会触及到人们个人隐私方面的需求,”她说。

传感器捕获数据时,系统会将数据发送至一个安全的中央服务器。李飞飞承认这一过程存在固有的安全风险,比如网络攻击。在一封回复 VentureBeat的邮件中,她强调研究人员在整个过程中都遵循隐私和安全准则。“例如,我们的边缘设备都配备了磁盘加密,数据将进行隐私属性删除(如面部模糊处理) ,数据将在传输到云之前加密,并且我们的服务器符合健康保险携带和责任法案(HIPPA),”她说。

一旦这些数据到达服务器,团队中的临床医生和人工智能专家将对其进行分析和注释,来开发一个机器学习模型。

“然后我们训练AI模型来识别临床相关的各种行为模式,包括呼吸、睡眠、饮食和其他行为,”李飞飞说。他们关注的行为模式是围绕日常生活活动中那些可能会引发健康状况恶化的行为。换句话说,这个模型的重点是寻找特定的衡量指标。这并非针对居民所有日常活动的深入和广泛的分析,李飞飞说,训练AI模型的意义是为了实现实用性和隐私安全之间的平衡。

之后团队将训练好的模型部署到边缘设备上,在那里监测系统可以在本地运行。这将创建一个闭环系统,使得没有数据能够泄露出去。这本质上确保了数据安全,却阻碍了在这个模型上进行任何进一步的训练。

研究人员想到了一个办法解决这一限制,李飞飞在发给 VentureBeat 的电子邮件中进行了概述了。“我们设想,每个边缘设备上的模型仍将不断更新,以适应新的环境,并通过联邦学习,以无监督的方式提高鲁棒性。通过联邦学习,我们将网络攻击的对象仅限于设备本身,而不是设备和云,以此来降低隐私和安全风险。”

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。

最后一步,该系统还需要将智能传感器的检测结果,传递给医护人员或老人的家庭成员。李飞飞表示团队还没有找到具体的解决方案,但是正在考虑使用APP或者网络界面,这两者都可以通过双重身份验证来确保数据安全。

她强调: “这些传感器并不是用来做诊断决策或者取代临床医生的,但是它们可以对住在家中的老年人进行实时不断的监测,向临床医生和家庭成员及时发出健康预警”。

“当然,在这项研究的每一步,以及这项技术的部署过程中,我们必须深入思考其中的每一项道德,隐私和安全问题,”她补充说。

当前疫情爆发,不仅要关注老年人的安全和健康,还要密切关注其他患者和隔离人员的情况。可以对系统的某些组成部分进行调整,以便在不侵犯公民权利和隐私的情况下进行追踪。但李飞飞暂时不愿涉足这些领域,她认为,“我们的目标是利用最尖端的计算机视觉和机器学习技术,以帮助解决一些最重要和最具挑战性的卫生保健问题,并为人工智能卫生保健研究提出一个道德、隐私和安全指南。”

李飞飞说,目前研究已经进展到下一阶段。他们已经在加州旧金山的一家疗养院完成了试点,和当地一家名为On Lok的护理机构合作,该机构致力于为老年人提供高质量的护理服务。

可穿戴设备实现非接触式监控

其他一些家用AI监控系统也涉及到可穿戴设备,比如 Current Health、 iRhythm 和 LiveFreely。比如说,iRhythm 公司研发的 Zio 心电贴片,可以连续佩戴14天,可提供连续心电监测。Care.ai 系统使用计算机视觉技术来实现非接触式监控,理念和李飞飞团队相似,但是Care.ai 系统主要是为医院服务的,而非家庭护理。

从另一个角度讲,当前社会隔离政策让独居老人也更加孤独。除了技术监测,对于老年人来说,更重要的还是家人的关心和(线上)陪伴吧!

THE END
免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表人工智能网的观点和立场。

相关热点

气囊存隐患 特斯拉召回1.4万辆Model S
人工智能
苏宁控股集团董事长张近东:企业发展一定要给年轻人机会
人工智能
12月17日,易到用车宣布施行新能源网约车计划,在全国范围内投入运营新能源网约车。作为该计划首个试点城市,易到用车在济南春节前投入运营1000辆新能源车,同步启动公共充电桩建设方案。
人工智能
民生信托撤回对乐视控股及贾跃亭执行申请,已追回10亿欠款
人工智能
律师:智能电视自带广告且无法关闭 涉嫌侵权
人工智能

相关推荐

1
3